z-logo
open-access-imgOpen Access
A property of interpolation spaces
Author(s) -
Lech Maligranda
Publication year - 1987
Publication title -
archiv der mathematik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 43
eISSN - 1420-8938
pISSN - 0003-889X
DOI - 10.1007/bf01196359
Subject(s) - mathematics , banach space , interpolation (computer graphics) , pure mathematics , humanities , combinatorics , computer science , artificial intelligence , art , motion (physics)
Let Ao, A~ and A 2 be Banach spaces continuously imbedded in some Hausdorff topological vector space, and let F be an interpolation functor. We consider the question: when is it true that (1) F({Ao, A 1 c~ A2} ) = F({Ao, A1} ) n F({Ao, A2) ). Peetre [4] proved that if {Ao, A~} is quasi-linearizable pair, i.e., there exist linear operators Vo(t ), Vl(t ) (depending on t>0) such that: VI(t):Ao+A~A i, i=0,1, Vo(t)a + V~(t)a = aand I[ Vo(t)allao + t II V~(t)aflA1 < cK(t, a: A o, A0 for a sA o + A1, and if moreover LlVl(t)alta <=c21lalla~ for a~A 2, then for a ~ (A o + A 0 c~ (A o + A2) , we have (2)

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom