A property of interpolation spaces
Author(s) -
Lech Maligranda
Publication year - 1987
Publication title -
archiv der mathematik
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 43
eISSN - 1420-8938
pISSN - 0003-889X
DOI - 10.1007/bf01196359
Subject(s) - mathematics , banach space , interpolation (computer graphics) , pure mathematics , humanities , combinatorics , computer science , artificial intelligence , art , motion (physics)
Let Ao, A~ and A 2 be Banach spaces continuously imbedded in some Hausdorff topological vector space, and let F be an interpolation functor. We consider the question: when is it true that (1) F({Ao, A 1 c~ A2} ) = F({Ao, A1} ) n F({Ao, A2) ). Peetre [4] proved that if {Ao, A~} is quasi-linearizable pair, i.e., there exist linear operators Vo(t ), Vl(t ) (depending on t>0) such that: VI(t):Ao+A~A i, i=0,1, Vo(t)a + V~(t)a = aand I[ Vo(t)allao + t II V~(t)aflA1 < cK(t, a: A o, A0 for a sA o + A1, and if moreover LlVl(t)alta <=c21lalla~ for a~A 2, then for a ~ (A o + A 0 c~ (A o + A2) , we have (2)
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom