Multigrid method for stability problems
Author(s) -
Shlomo Ta’asan
Publication year - 1988
Publication title -
journal of scientific computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.53
H-Index - 80
eISSN - 1573-7691
pISSN - 0885-7474
DOI - 10.1007/bf01061286
Subject(s) - multigrid method , eigenvalues and eigenvectors , mathematics , discretization , relaxation (psychology) , eigenfunction , subspace topology , grid , stability (learning theory) , work (physics) , numerical analysis , mathematical analysis , partial differential equation , geometry , computer science , psychology , social psychology , physics , quantum mechanics , machine learning , mechanical engineering , engineering
The problem of calculating the stability of steady state solutions of differential equations is treated. Leading eigenvalues (i.e., having maximal real part) of large matrices that arise from discretization are to be calculated. An efficient multigrid method for solving these problems is presented. The method begins by obtaining an initial approximation for the dominant subspace on a coarse level using a damped Jacobi relaxation. This proceeds until enough accuracy for the dominant subspace has been obtained. The resulting grid functions are then used as an initial approximation for appropriate eigenvalue problems. These problems are solved first on coarse levels, followed by refinement until a desired accuracy for the eigenvalues has been achieved. The method employs local relaxation on all levels together with a global change on the coarsest level only, which is designed to separate the different eigenfunctions as well as to update their corresponding eigenvalues. Coarsening is done using the FAS formulation in a nonstandard way in which the right-hand side of the coarse grid equations involves unknown parameters to be solved for on the coarse grid. This in particular leads to a new multigrid method for calculating the eigenvalues of symmetric problems. Numerical experiments with a model problem that are presented demonstrate the effectiveness of the method proposed. Using an FMG algorithm a solution to the level of discretization errors is obtained in just a few work units (less than 10), where a work unit is the work involved in one Jacobi relaxation on the finest level.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom