z-logo
open-access-imgOpen Access
Weak disorder expansion of Liapunov exponents in a degenerate case
Author(s) -
N. Za,
Bernard Derrida
Publication year - 1988
Publication title -
journal of statistical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.71
H-Index - 115
eISSN - 1572-9613
pISSN - 0022-4715
DOI - 10.1007/bf01026489
Subject(s) - degenerate energy levels , mathematics , eigenvalues and eigenvectors , critical exponent , mathematical analysis , product (mathematics) , mathematical physics , pure mathematics , physics , quantum mechanics , scaling , geometry
It is shown how the weak disorder expansion of the Liapunov exponents of a product of random matrices can be derived when the unperturbed matrices have two degenerate eigenvalues. The general expression of the Liapunov exponents at the lowest nontrivial order in disorder is given.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom