Numerical experiments on quadratically convergent algorithms for function minimization
Author(s) -
H. Y. Huang,
A. V. Levy
Publication year - 1970
Publication title -
journal of optimization theory and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.109
H-Index - 91
eISSN - 1573-2878
pISSN - 0022-3239
DOI - 10.1007/bf00926604
Subject(s) - quadratic growth , mathematics , function (biology) , theory of computation , quadratic equation , sequence (biology) , convergence (economics) , algorithm , minification , independent and identically distributed random variables , rate of convergence , mathematical optimization , computer science , random variable , statistics , geometry , computer network , channel (broadcasting) , genetics , evolutionary biology , economics , biology , economic growth
The nine quadratically convergent algorithms for function minimization appearing in Ref. 2 are tested through several numerical examples. A quadratic function and four nonquadratic functions are investigated. For the quadratic function, the results show that, if high-precision arithmetic together with high accuracy in the one-dimensional search is employed, all the algorithms behave identically: they all produce the same sequence of points and they all lead to the minimal point in the same number of iterations (this number is equal at most to the number of variables). For the nonquadratic functions, the results show that some of the algorithms behave identically and, therefore, any one of them can be considered to be representative of the entire class. The effect of different restarting conditions on the convergence characteristics of the algorithms is studied. Proper restarting conditions for faster convergence are given.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom