z-logo
open-access-imgOpen Access
Mean and turbulence measurements in the boundary layer and wake of a symmetric aerofoil
Author(s) -
K. S. Hebbar
Publication year - 1986
Publication title -
experiments in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.01
H-Index - 122
eISSN - 1432-1114
pISSN - 0723-4864
DOI - 10.1007/bf00717817
Subject(s) - wake , trailing edge , airfoil , mechanics , chord (peer to peer) , boundary layer , physics , reynolds number , turbulence , leading edge , wind tunnel , reynolds stress , splitter plate , distributed computing , computer science
Detailed measurements of two-dimensional profiles of static pressure, mean velocity, turbulence intensity and Reynolds shear stress were carried out with conventional pressure probes and hot wire probes at preselected streamwise stations in the boundary layer and wake of a 12.5% thick, 600 mm chord two-dimensional symmetric aerofoil mounted at zero incidence in a low speed wind tunnel. The chord Reynolds number was one million and the wake measurements extended up to three chord lengths (or nearly 660 trailing edge momentum thicknesses) downstream of the trailing edge. The data indicate rapid interaction of the wall layers immediately behind the trailing edge, leading to significant changes in the flow parameters close to the trailing edge. The relaxation of the wake is preceded by initial ‘overshoot’ in the streamwise profiles of mean-flow parameters and peak values of turbulence components. Further growth of the wake towards similarity/equilibrium is discussed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom