z-logo
open-access-imgOpen Access
Roughness-induced generation of crossflow vortices in three-dimensional boundary layers
Author(s) -
Meelan M. Choudhari
Publication year - 1994
Publication title -
theoretical and computational fluid dynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.817
H-Index - 59
eISSN - 1432-2250
pISSN - 0935-4964
DOI - 10.1007/bf00417924
Subject(s) - vortex , amplitude , mechanics , instability , surface finish , physics , boundary (topology) , compressibility , geometry , classical mechanics , mathematics , optics , mathematical analysis , materials science , composite material
The receptivity theory of Goldstein and Ruban is extended within the nonasymptotic (quasi-parallel) framework of Zavol'skii et al. to predict the roughness-induced generation of stationary and nonstationary instability waves in three-dimensional, incompressible boundary layers. The influence of acoustic-wave orientation, as well as that of different types of roughness geometries, including isolated roughness elements, periodic arrays, and two-dimensional lattices of compact roughness shapes, as well as random, but spatially homogeneous roughness distributions, is examined. The parametric study for the Falkner-Skan-Cooke family of boundary layers supports our earlier conjecture that the initial amplitudes of roughness-induced stationary vortices are likely to be significantly larger than the amplitudes of similarly induced nonstationary vortices in the presence of acoustic disturbances in the free stream. Maximum unsteady receptivity occurs when the acoustic velocity fluctuation is aligned with the wave-number vector of the unsteady vortex mode. On the other hand, roughness arrays that are oriented somewhere close to the group velocity direction are likely to produce higher instability amplitudes. Limitations of the nonasymptotic theory are discussed, and future work is suggested.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom