Fermentative degradation of triethanolamine by a homoacetogenic bacterium
Author(s) -
Joachim Frings,
Christine Wondrak,
Bernhard Schink
Publication year - 1994
Publication title -
archives of microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.648
H-Index - 102
eISSN - 1432-072X
pISSN - 0302-8933
DOI - 10.1007/bf00264381
Subject(s) - triethanolamine , chemistry , acetaldehyde , ethanolamine , biochemistry , organic chemistry , ethanol , analytical chemistry (journal)
With triethanolamine as sole source of energy and organic carbon, a strictly anaerobic, gram-positive, rod-shaped bacterium, strain LuTria 3, was isolated from sewage sludge and was assigned to the genus Acetobacterium on the basis of morphological and physiological properties. The G+C content of the DNA was 34.9 +/- 1.0 mol %. The new isolate fermented triethanolamine to acetate and ammonia. In cell-free extracts, a triethanolamine-degrading enzyme activity was detected that formed acetaldehyde as reaction product. Triethanolamine cleavage was stimulated 30-fold by added adenosylcobalamin (co-enzyme B12) and inhibited by cyanocobalamin or hydroxocobalamin. Ethanolamine ammonia lyase, acetaldehyde:acceptor oxidoreductase, phosphate acetyltransferase, acetate kinase, and carbon monoxide dehydrogenase were measured in cell-free extracts of this strain. Our results establish that triethanolamine is degraded by a corrinoid-dependent shifting of the terminal hydroxyl group to the subterminal carbon atom, analogous to a diol dehydratase reaction, to form an unstable intermediate that releases acetaldehyde. No anaerobic degradation of triethylamine was observed in similar enrichment assays.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom