z-logo
open-access-imgOpen Access
Information theoretic analysis for a general queueing system at equilibrium with application to queues in tandem
Author(s) -
J. Cantor,
Anthony Ephremides,
D. Horton
Publication year - 1986
Publication title -
acta informatica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.481
H-Index - 40
eISSN - 1432-0525
pISSN - 0001-5903
DOI - 10.1007/bf00264312
Subject(s) - queueing theory , computer science , layered queueing network , joint probability distribution , queue , mathematical optimization , bulk queue , mean value analysis , mathematics , statistics , computer network
In this paper, information theoretic inference methology for system modeling is applied to estimate the probability distribution for the number of customers in a general, single server queueing system with infinite capacity utilized by an infinite customer population. Limited to knowledge of only the mean number of customers and system equilibrium, entropy maximization is used to obtain an approximation for the number of customers in the G¦ G¦1 queue. This maximum entropy approximation is exact for the case of G=M, i.e., the M¦M¦1 queue. Subject to both independent and dependent information, an estimate for the joint customer distribution for queueing systems in tandem is presented. Based on the simulation of two queues in tandem, numerical comparisons of the joint maximum entropy distribution is given. These results serve to establish the validity of the inference technique and as an introduction to information theoretic approximation to queueing networks.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom