z-logo
open-access-imgOpen Access
Enzymes involved in anaerobic degradation of acetone by a denitrifying bacterium
Author(s) -
Harald Platen,
Bernhard Schink
Publication year - 1990
Publication title -
biodegradation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.842
H-Index - 77
eISSN - 1572-9729
pISSN - 0923-9820
DOI - 10.1007/bf00119761
Subject(s) - decarboxylation , carboxylation , chemistry , acetone , biochemistry , coenzyme a , thiolase , citric acid cycle , enzyme , cofactor , denitrifying bacteria , organic chemistry , dehydrogenase , catalysis , denitrification , reductase , nitrogen
The pathway of anaerobic acetone degradation by the denitrifying bacterial strain BunN was studied by enzyme measurements in extracts of anaerobic acetone-grown cells. An ADP- and MgCl2-dependent decarboxylation of acetoacetate was detected which could not be found in cell-free extracts of acetate-grown cells. It is concluded that free acetoacetate is formed by ATP-dependent carboxylation of acetone. Acetoacetate was converted into its coenzyme A ester by succinyl-CoA: acetoacetate CoA transferase, and cleaved by a thiolase into acetyl-CoA. The acetyl residue was completely oxidized in the citric acid cycle. The ADP-dependent decarboxylation of acetoacetate was inhibited by EDTA, but not by avidin. High myokinase activities led to equilibrium amounts of ATP, ADP, and AMP in the reaction mixtures, and prevented determination of the decarboxylase reaction stoichiometry, therefore.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom