Directed disruption of the Chlamydomonas chloroplast psbK gene destabilizes the photosystem II reaction center complex
Author(s) -
Yuichiro Takahashi,
Hideki Matsumoto,
Michel GoldschmidtClermont,
JeanDavid Rochaix
Publication year - 1994
Publication title -
plant molecular biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.448
H-Index - 174
eISSN - 1573-5028
pISSN - 0167-4412
DOI - 10.1007/bf00029859
Subject(s) - chlamydomonas reinhardtii , photosystem ii , biology , chloroplast , photosystem i , chlamydomonas , mutant , transformation (genetics) , photosynthetic reaction centre , photosynthesis , biophysics , biochemistry , gene
Using particle gun-mediated chloroplast transformation we have disrupted the psbK gene of Chlamydomonas reinhardtii with an aadA expression cassette that confers resistance to spectinomycin. The transformants are unable to grow photoautotrophically, but they grow normally in acetate-containing medium. They are deficient in photosystem II activity as measured by fluorescence transients and O2 evolution and they accumulate less than 10% of wild-type levels of photosystem II as measured by immunochemical means. Pulse-labeling experiments indicate that the photosystem II complex is synthesized normally in the transformants. These results differ from those obtained previously with similar cyanobacterial psbK mutants that were still capable of photoautotrophic growth (Ikeuchi et al., J. Biol. Chem. 266 (1991) 1111-1115). In C. reinhardtii the psbK product is required for the stable assembly and/or stability of the photosystem II complex and essential for photoautotrophic growth. The data also suggest that the stability requirements of the photosynthetic complexes differ considerably between C. reinhardtii and cyanobacteria.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom