Programming Languages and Systems
Author(s) -
Tom Hirschowitz,
Xavier Leroy,
J. B. Wells
Publication year - 2004
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
DOI - 10.1007/b96702
Subject(s) - programming language , computer science
. Graphs are an intuitive model for states of a (software) system that include pointer structures — for instance, object-oriented programs. However, a naive encoding results in large individual states and large, or even unbounded, state spaces. As usual, some form of abstraction is necessary in order to arrive at a tractable model. In this paper we propose a decidable fragment of first-order graph logic that we call local shape logic (LSL) as a possible abstraction mechanism, inspired by previous work of Sagiv, Reps and Wilhelm. An LSL formula constrains the multiplicities of nodes and edges in state graphs; abstraction is achieved by reasoning not about individual, concrete state graphs but about their characteristic shape properties. We go on to define the concept of the canonical shape of a state graph, which is expressed in a monomorphic sub-fragment of LSL, for which we define a graphical representation. We show that the canonical shapes give rise to an automatic finite abstraction of the state space of a software system, and we give an upper bound to the size of this abstract state space
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom