z-logo
open-access-imgOpen Access
Inductive Logic Programming
Author(s) -
Guillaume Cleuziou,
Lionel Martin,
Christel Vrain
Publication year - 2003
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
DOI - 10.1007/b13700
Subject(s) - programming language , computer science
Acceptance rate = 40%Relational reinforcement learning is a Q-learning technique for relational state-action spaces. It aims to enable agents to learn how to act in an environment that has no natural representation as a tuple of constants. In this case, the learning algorithm used to approximate the mapping between state-action pairs and their so called Q(uality)-value has to be not only very reliable, but it also has to be able to handle the relational representation of state-action pairs.In this paper we investigate the use of Gaussian processes to approximate the quality of state-action pairs. In order to employ Gaussian processes in a relational setting we use graph kernels as the covariance function between state-action pairs. Experiments conducted in the blocks world show that Gaussian processes with graph kernels can compete with, and often improve on, regression trees and instance based regression as a generalisation algorithm for relational reinforcement learning.status: publishe

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom