z-logo
open-access-imgOpen Access
Mathematics of Surfaces
Author(s) -
Michael Wilson,
Ralph R. Martin
Publication year - 2003
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
DOI - 10.1007/b11966
Subject(s) - mathematics , mathematics education , computer science
Mesh parameterization is a key problem in digital geometry processing. By cutting a surface along a set of edges (a seam), one can map an arbitrary topology surface mesh to a single chart. Unfortunately, high distortion occurs when protrusions of the surface (such as fingers of a hand and horses’ legs) are flattened into a plane. This paper presents a novel skeleton-based algorithm for computing a seam on a triangulated surface. The seam produced is a full component Steiner tree in a graph constructed from the original mesh. By generating the seam so that all extremal vertices are leaves of the seam, we can obtain good parametrization with low distortion.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom