Sublinear Algorithms in the External Memory Model
Author(s) -
Alexandr Andoni,
Piotr Indyk,
Krzysztof Onak,
Ronitt Rubinfeld
Publication year - 2010
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-642-16366-1
DOI - 10.1007/978-3-642-16367-8_15
Subject(s) - sublinear function , computer science , auxiliary memory , block (permutation group theory) , algorithm , time complexity , theoretical computer science , mathematics , discrete mathematics , combinatorics , computer hardware
We initiate the study of sublinear-time algorithms in the external memory model. In this model, the data is stored in blocks of a certain size B, and the algorithm is charged a unit cost for each block access. This model is well-studied, since it reflects the computational issues occurring when the (massive) input is stored on a disk. Since each block access operates on B data elements in parallel, many problems have external memory algorithms whose number of block accesses is only a small fraction (e.g. 1/B) of their main memory complexity. However, to the best of our knowledge, no such reduction in complexity is known for any sublinear-time algorithm. One plausible explanation is that the vast majority of sublinear-time algorithms use random sampling and thus exhibit no locality of reference. This state of affairs is quite unfortunate, since both sublinear-time algorithms and the external memory model are important approaches to dealing with massive data sets, and ideally they should be combined to achieve best performance. We show that such combination is indeed possible. In particular, we consider three well-studied problems: testing of distinctness, uniformity and identity of an empirical distribution induced by data. For these problems we show random-sampling-based algorithms whose number of block accesses is up to a factor of 1/√B smaller than the main memory complexity of those problems.We also show that this improvement is optimal for those problems. Since these problems are natural primitives for a number of samplingbased algorithms for other problems, our tools improve the external memory complexity of other problems as well.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom