z-logo
open-access-imgOpen Access
Database Systems for Advanced Applications
Author(s) -
Guoliang Li,
Jun Yang,
João Luiz Calmon,
Juggapong Natwichai,
Yongxin Tong
Publication year - 2019
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
DOI - 10.1007/978-3-030-18590-9
Subject(s) - computer science , conjunction (astronomy) , database , library science , world wide web , physics , astronomy
Latent entity associations (EA) represent that two entities associate with each other indirectly through multiple intermediate entities in different textual Web contents (TWCs) including e-mails, Web news, social network pages, etc. In this paper, by adopting Bayesian Network as the framework to represent and infer latent EAs as well as the probabilities of associations, we propose the concept of entity association Bayesian Network (EABN). To construct EABN efficiently, we employ self-organizing map for TWC dataset division to make the co-occurrence-based dependence of each pair of entities concern just a small set of documents. Using probabilistic inferences of EABN, we evaluate and rank EAs in all possible entity pairs, by which novel latent EAs could be found. Experimental results show the effectiveness and efficiency of our approach.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom