z-logo
open-access-imgOpen Access
Graph Problems with Obligations
Author(s) -
Christian Laforest,
Alexis Cornet
Publication year - 2018
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
DOI - 10.1007/978-3-030-04651-4_13
Subject(s) - combinatorics , edge cover , vertex (graph theory) , spanning tree , partition (number theory) , mathematics , vertex cover , discrete mathematics , graph , computer science
In this paper we study variants of well-known graph problems: vertex cover, connected vertex cover, dominating set, total dominating set, independent dominating set, spanning tree, connected minimum weighted spanning graph, matching and hamiltonian path. Given a graph (G=(V,E)), we add a partition (varPi _{V}) (resp. (varPi _{E})) of its vertices (resp. of its edges). Now, any solution S containing an element (vertex or edge) of a part of this partition must also contain all the others ones. In other words, elements can only be added set by set, instead of one by one as in the classical situation (corresponding to obligations that are singletons). A motivation is to give a general framework and to study the complexity of combinatorial problems coming from systems where elements are interdependent. We propose hardness and approximation results.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom