Optimizing voting-type algorithms for replicated data
Author(s) -
Akhil Kumar,
Arie Segev
Publication year - 1988
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-19074-0
DOI - 10.1007/3-540-19074-0_66
Subject(s) - computer science , voting , algorithm , theoretical computer science , law , politics , political science
The main objectives of data replication are improved availability and reduced communications cost for queries. Maintaining the various copies consistent, however, increases the communications cost incurred by updates. For a given degree of replication, the choice of a specific concurrency control algorithm can have a significant impact on the total communications cost. In this paper we present various models for analyzing and understanding the trade-offs between the potentially opposing objectives of maximum resiliency and minimum communications cost in the context of the quorum consensus class of algorithms. It is argued that an optimal vote assignment is one which meets given resiliency goals and yet incurs the least communications cost compared with all other alternative assignments. A mathematical model for vote assignment is developed, and optimal algorithms are presented. It is demonstrated that significant cost savings can be realized from these approaches.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom