z-logo
open-access-imgOpen Access
A Simple Related-Key Attack on the Full SHACAL-1
Author(s) -
Eli Biham,
Orr Dunkelman,
Nathan Keller
Publication year - 2006
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-69327-0
DOI - 10.1007/11967668_2
Subject(s) - computer science , block cipher , key (lock) , brute force attack , hash function , key size , computer security , slide attack , boomerang attack , algorithm , cryptography , stream cipher attack , public key cryptography , encryption , differential cryptanalysis
SHACAL-1 is a 160-bit block cipher with variable key length of up to 512-bit key based on the hash function SHA-1. It was submitted to the NESSIE project and was accepted as a finalist for the 2nd phase of evaluation. Since its introduction, SHACAL-1 withstood extensive cryptanalytic efforts. The best known key recovery attack on the full cipher up to this paper has a time complexity of about 2420 encryptions. In this paper we use an observation due to Saarinen to present an elegant related-key attack on SHACAL-1. The attack can be mounted using two to eight unknown related keys, where each additional key reduces the time complexity of retrieving the actual values of the keys by a factor of 262. When all eight related-keys are used, the attack requires 2101.3 related-key chosen plaintexts and has a running time of 2101.3 encryptions. This is the first successful related-key key recovery attack on a cipher with varying round constants.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom