An Approach for Autonomy: A Collaborative Communication Framework for Multi-agent Systems
Author(s) -
Warren R. Dufrene
Publication year - 2006
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-69265-7
DOI - 10.1007/11964995_13
Subject(s) - computer science , software deployment , multi agent system , adaptability , field (mathematics) , intelligent agent , robotics , artificial intelligence , autonomous agent , systems engineering , human–computer interaction , software engineering , robot , engineering , ecology , mathematics , pure mathematics , biology
Research done during the last three years has studied the emersion properties of Complex Adaptive Systems (CAS). The deployment of Artificial Intelligence (AI) techniques applied to remote Unmanned Aerial Vehicles has led the author to investigate applications of CAS within the field of Autonomous Multi-Agent Systems. The core objective of current research efforts is focused on the simplicity of Intelligent Agents (IA) and the modeling of these agents within complex systems. This research effort looks at the communication, interaction, and adaptability of multi-agents as applied to complex systems control. The embodiment concept applied to robotics has application possibilities within multi-agent frameworks. A new framework for agent awareness within a virtual 3D world concept is possible where the vehicle is composed of collaborative agents. This approach is considered for application to the complex tetrahedron structure system from NASA Goddard Space Flight Center (GSFC) developed under the Autonomous Nano Technology Swarm (ANTS) program.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom