z-logo
open-access-imgOpen Access
General Conversion for Obtaining Strongly Existentially Unforgeable Signatures
Author(s) -
Isamu Teranishi,
Takuro Oyama,
Wakaha Ogata
Publication year - 2006
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
DOI - 10.1007/11941378_14
Subject(s) - random oracle , schnorr signature , ring signature , computer science , signature (topology) , merkle signature scheme , theoretical computer science , public key cryptography , encryption , elgamal signature scheme , scheme (mathematics) , oracle , digital signature , algorithm , blind signature , mathematics , computer security , programming language , hash function , mathematical analysis , geometry
We say that a signature scheme is strongly existentially unforgeable if no adversary, given message/signature pairs adaptively, can generate a new signature on either a signature on a new message or a new signature on a previously signed message. Strongly existentially unforgeable signature schemes are used to construct many applications, such as an IND-CCA2 secure public-key encryption scheme and a group signature scheme. We propose two general and efficient conversions, both of which transform a secure signature scheme to a strongly existentially unforgeable signature scheme. There is a tradeoff between the two conversions. The first conversion requires the random oracle, but the signature scheme transformed by the first conversion has shorter signature length than the scheme transformed by the second conversion. The second conversion does not require the random oracle. Therefore, if the original signature scheme is of the standard model, the strongly existentially unforgeable property of the converted signature scheme is proved also in the standard model. Both conversions ensure tight security reduction to the underlying security assumptions. Moreover, the transformed schemes by the first or second conversion satisfy the on-line/off-line property. That is, signers can precompute almost all operations on the signing before they are given a message.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom