z-logo
open-access-imgOpen Access
Disclosure Analysis for Two-Way Contingency Tables
Author(s) -
Haibing Lu,
Yingjiu Li,
Xintao Wu
Publication year - 2006
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-49330-1
DOI - 10.1007/11930242_6
Subject(s) - categorical variable , contingency table , computer science , subject (documents) , contingency , table (database) , column (typography) , distribution (mathematics) , data mining , mathematics , world wide web , machine learning , telecommunications , epistemology , philosophy , frame (networking) , mathematical analysis
Disclosure analysis in two-way contingency tables is important in categorical data analysis. The disclosure analysis concerns whether a data snooper can infer any protected cell values, which contain privacy sensitive information, from available marginal totals (i.e., row sums and column sums) in a two-way contingency table. Previous research has been targeted on this problem from various perspectives. However, there is a lack of systematic definitions on the disclosure of cell values. Also, no previous study has been focused on the distribution of the cells that are subject to various types of disclosure. In this paper, we define four types of possible disclosure based on the exact upper bound and/or the lower bound of each cell that can be computed from the marginal totals. For each type of disclosure, we discover the distribution pattern of the cells subject to disclosure. Based on the distribution patterns discovered, we can speed up the search for all cells subject to disclosure

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom