Solving Probabilistic Combinatorial Games
Author(s) -
Ling Zhao,
Martin Müller
Publication year - 2006
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-48887-1
DOI - 10.1007/11922155_17
Subject(s) - computer science , probabilistic logic , monte carlo method , solver , heuristic , mathematical optimization , theoretical computer science , algorithm , mathematics , artificial intelligence , statistics , programming language
Probabilistic combinatorial games (PCGs) are a model for Go-like games recently introduced by Ken Chen. They differ from normal combinatorial games since terminal positions in each subgame are evaluated by a probability distribution. The distribution expresses the uncertainty in the local evaluation. This paper focuses on the analysis and solution methods for a special case, 1-level binary PCGs. Monte-Carlo analysis is used for move ordering in an exact solver that can compute the winning probability of a PCG efficiently. Monte-Carlo interior evaluation is used in a heuristic player. Experimental results show that both types of Monte-Carlo methods work very well in this problem.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom