Constructing Camin-Sokal Phylogenies Via Answer Set Programming
Author(s) -
Jonathan Kavanagh,
David G. M. Mitchell,
Eugenia Ternovska,
Ján Maňuch,
Xiao Hong Zhao,
Arvind Gupta
Publication year - 2006
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-48281-4
DOI - 10.1007/11916277_31
Subject(s) - computer science , set (abstract data type) , phylogenetic tree , phylogenetics , binary number , theoretical computer science , cladistics , programming language , biology , mathematics , arithmetic , gene , biochemistry
Constructing parsimonious phylogenetic trees from species data is a central problem in phylogenetics, and has diverse applications, even outside biology. Many variations of the problem, including the cladistic Camin-Sokal (CCS) version, are NP-complete. We present Answer Set Programming (ASP) models for the binary CCS problem, as well as a simpler perfect phylogeny version, along with experimental results of applying the models to biological data. Our contribution is three-fold. First, we solve phylogeny problems which have not previously been tackled by ASP. Second, we report on variants of our CCS model which significantly affect run time, including the interesting case of making the program “slightly tighter". This version exhibits some of the best performance, in contrast with a tight version of the model which exhibited poor performance. Third, we are able to find proven-optimal solutions for larger instances of the CCS problem than the widely used branch-and-bound-based PHYLIP package.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom