Deciding Key Cycles for Security Protocols
Author(s) -
Véronique Cortier,
Eugen Zălinescu
Publication year - 2006
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-48281-4
DOI - 10.1007/11916277_22
Subject(s) - decidability , computer science , mathematical proof , key (lock) , secrecy , symmetric key algorithm , cryptographic protocol , encryption , timestamp , theoretical computer science , computer security , bounded function , cryptography , authentication (law) , public key cryptography , mathematics , mathematical analysis , geometry
Many recent results are concerned with interpreting proofs of security done in symbolic models in the more detailed models of computational cryptography. In the case of symmetric encryption, these results stringently demand that no key cycle (e.g. {k}k) can be produced during the execution of protocols. While security properties like secrecy or authentication have been proved decidable for many interesting classes of protocols, the automatic detection of key cycles has not been studied so far. In this paper, we prove that deciding the existence of key-cycles is NP-complete for a bounded number of sessions. Next, we observe that the techniques that we use are of more general interest and apply them to reprove the decidability of a significant existing fragment of protocols with timestamps.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom