z-logo
open-access-imgOpen Access
Evaluation of a Large-Scale Topology Discovery Algorithm
Author(s) -
Benoît Donnet,
Bradley Huffaker,
Timur Friedman,
kc claffy
Publication year - 2006
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-47701-2
DOI - 10.1007/11908852_17
Subject(s) - traceroute , planetlab , internet topology , computer science , testbed , denial of service attack , network topology , computer network , the internet , distributed computing , router , topology (electrical circuits) , internet control message protocol , engineering , world wide web , electrical engineering
International audienceIn the past few years, the network measurement community has been interested in the problem of internet topology discovery using a large number (hundreds or thousands) of measurement monitors. The standard way to obtain information about the internet topology is to use the traceroute tool from a small number of monitors. Recent papers have made the case that increasing the number of monitors will give a more accurate view of the topology. However, scaling up the number of monitors is not a trivial process. Duplication of effort close to the monitors wastes time by reexploring well-known parts of the network, and close to destinations might appear to be a distributed denial-of-service (DDoS) attack as the probes converge from a set of sources towards a given destination. In prior work, authors of this paper proposed Doubletree, an algorithm for cooperative topology discovery, that reduces the load on the network, i.e., router IP interfaces and end-hosts, while discovering almost as many nodes and links as standard approaches based on traceroute. This paper presents our open-source and freely downloadable implementation of Doubletree in a tool we call traceroute@home. We evaluate the performance of our implementation on the PlanetLab testbed and discuss a large-scale monitoring infrastructure that could benefit of Doubletree

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom