A Statically Verifiable Programming Model for Concurrent Object-Oriented Programs
Author(s) -
Bart Jacobs,
Jan Smans,
Frank Piessens,
Wolfram Schulte
Publication year - 2006
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-47460-9
DOI - 10.1007/11901433_23
Subject(s) - computer science , programming language , concurrent object oriented programming , programming paradigm , concurrency , java , object oriented programming , aliasing , verifiable secret sharing , procedural programming , theoretical computer science , inductive programming , artificial intelligence , set (abstract data type) , undersampling
Reasoning about multithreaded object-oriented programs is difficult, due to the non-local nature of object aliasing, data races, and deadlocks. We propose a programming model that prevents data races and deadlocks, and supports local reasoning in the presence of object aliasing and concurrency. Our programming model builds on the multi-threading and synchronization primitives as they are present in current mainstream languages. Java or C# programs developed according to our model can be annotated by means of stylized comments to make the use of the model explicit. We show that such annotated programs can be formally verified to comply with the programming model. In other words, if the annotated program verifies, the underlying Java or C# program is guaranteed to be free from data races and deadlocks, and it is sound to reason locally about program behavior. We have implemented a verifier for programs developed according to our model in a custom build of the Spec# programming system, and have validated our approach on a case study.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom