z-logo
open-access-imgOpen Access
Interpreting Microarray Experiments Via Co-expressed Gene Groups Analysis (CGGA)
Author(s) -
Ricardo Martínez,
Nicolas Pasquier,
Claude Pasquier,
Lucero Lopez-Perez
Publication year - 2006
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-46491-3
DOI - 10.1007/11893318_34
Subject(s) - gene , dna microarray , microarray analysis techniques , microarray , gene chip analysis , genome , computational biology , microarray databases , computer science , biology , gene expression , bioinformatics , genetics
International audienceMicroarray technology produces vast amounts of data by measuring simultaneously the expression levels of thousands of genes under hundreds of biological conditions. Nowadays, one of the principal challenges in bioinformatics is the interpretation of huge data using different sources of information. We propose a novel data analysis method named CGGA (Co-expressed Gene Groups Analysis) that automatically finds groups of genes that are functionally enriched, i.e. have the same functional annotations, and are co- expressed. CGGA automatically integrates the information of microarrays, i.e. gene expression profiles, with the functional annotations of the genes obtained by the genome-wide information sources such as Gene Ontology (GO)1. By applying CGGA to well-known microarray experiments, we have identified the principal functionally enriched and co-expressed gene groups, and we have shown that this approach enhances and accelerates the interpretation of DNA microarray experiments

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom