z-logo
open-access-imgOpen Access
Language Learning for the Autonomous Mental Development of Conversational Agents
Author(s) -
Jin-Hyuk Hong,
Sung-Soo Lim,
SungBae Cho
Publication year - 2006
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-46484-0
DOI - 10.1007/11893295_98
Subject(s) - computer science , human–computer interaction , artificial intelligence , intelligent agent , usability , mental state , reinforcement learning , development (topology) , programming language , cognitive science , psychology , mathematical analysis , mathematics
Since the manual construction of our knowledge-base has several crucial limitations when applied to intelligent systems, mental development has been investigated in recent years. Autonomous mental development is a new paradigm for developing autonomous machines, which are adaptive and flexible to the environment. Language development, a kind of mental development, is an important aspect of intelligent conversational agents. In this paper, we propose an intelligent conversational agent and its language development mechanism by putting together five promising techniques; Bayesian networks, pattern matching, finite state machines, templates, and genetic programming. Knowledge acquisition implemented by finite state machines and templates, and language learning by genetic programming are developed for language development. Several illustrations and usability tests show the usefulness of the proposed developmental conversational agent.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom