z-logo
open-access-imgOpen Access
Classification Using Multiple and Negative Target Rules
Author(s) -
Jiuyong Li,
Jason Jones
Publication year - 2006
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-46535-9
DOI - 10.1007/11892960_26
Subject(s) - overfitting , computer science , classifier (uml) , artificial intelligence , machine learning , decision rule , rule based system , data mining , benchmark (surveying) , artificial neural network , geodesy , geography
Rules are a type of human-understandable knowledge, and rule-based methods are very popular in building decision support systems. However, most current rule based classification systems build small classifiers where no rules account for exceptional instances and a default prediction plays a major role in the prediction. In this paper, we discuss two schemes to build rule based classifiers using multiple and negative target rules. In such schemes, negative rules pick up exceptional instances and multiple rules provide alternative predictions. The default prediction is removed and hence all predictions relate to rules providing explanations for the predictions. One risk for building a large rule based classifier is that it may overfit training data and results in low predictive accuracy. We show experimentally that one classifier is more accurate than a benchmark rule based classifier, C4.5rules.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom