Machine Learning Biochemical Networks from Temporal Logic Properties
Author(s) -
Laurence Calzone,
Nathalie Chabrier-Rivier,
François Fages,
Sylvain Soliman
Publication year - 2006
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-45779-8
DOI - 10.1007/11880646_4
Subject(s) - computer science , temporal logic , abstraction , programming language , specification language , artificial intelligence , linear temporal logic , formal language , semantics (computer science) , theoretical computer science , philosophy , epistemology
One central issue in systems biology is the definition of formal languages for describing complex biochemical systems and their behavior at different levels. The biochemical abstract machine BIOCHAM is based on two formal languages, one rule-based language used for modeling biochemical networks, at three abstraction levels corresponding to three semantics: boolean, concentration and population; and one temporal logic language used for formalizing the biological properties of the system. In this paper, we show how the temporal logic language can be turned into a specification language. We describe two algorithms for inferring reaction rules and kinetic parameter values from a temporal specification formalizing the biological data. Then, with an example of the cell cycle control, we illustrate how these machine learning techniques may be useful to the modeler.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom