Gait Control Generation for Physically Based Simulated Robots Using Genetic Algorithms
Author(s) -
Milton Roberto Heinen,
Fernando Santos Osório
Publication year - 2006
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-45462-4
DOI - 10.1007/11874850_60
Subject(s) - robot , fitness function , computer science , gait , genetic algorithm , control (management) , robot control , function (biology) , legged robot , mobile robot , artificial intelligence , simulation , control engineering , machine learning , engineering , physiology , evolutionary biology , biology
This paper describes our studies in the legged robots research area and the development of the LegGen System, that is used to automatically create and control stable gaits for legged robots into a physically based simulation environment. The parameters used to control the robot are optimized using Genetic Algorithms (GA). Comparisons between different fitness functions were accomplished, indicating how to compose a better multi-criterion fitness function to be used in the gait control of the legged robots. The best gait control solution and the best robot model were selected in order to help us to build a real robot in the future. The results also showed that it is possible to generate stable gaits using GA in an efficient manner.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom