z-logo
open-access-imgOpen Access
Mining Intonation Corpora Using Knowledge Driven Sequential Clustering
Author(s) -
David Escudero-Mancebo,
Valentín Cardeñoso-Payo
Publication year - 2006
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-45462-4
DOI - 10.1007/11874850_40
Subject(s) - computer science , cluster analysis , intonation (linguistics) , hierarchical clustering , artificial intelligence , natural language processing , set (abstract data type) , merge (version control) , information retrieval , linguistics , philosophy , programming language
This work presents a mining methodology designed to cope with the usual data scarcity problems of intonation corpora which arises from the high variability of prosodic information. The methodology is an adaptation of a basic agglomerative clustering technique, guided by a set of domain constraints. The peculiarities of the text-to-speech intonation modelling problem are considered in order to fix the initial configuration of the cluster and the criteria to merge classes and stopping their split- ting. The scarcity problem poses the need to apply a sequential selection mechanism of prosodic features, in order to obtain the initial set of classes in the cluster. A searching strategy to select the best class among a set of alternatives is proposed, which provides useful prediction models for accurate synthetic intonation. Visualization of final classes by means of a modified decision tree brings graphical cues about contrastable prosodic information of the intonation corpus.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom