z-logo
open-access-imgOpen Access
Intervals, Syzygies, Numerical Gröbner Bases: A Mixed Study
Author(s) -
Marco Bodrato,
Alberto Zai
Publication year - 2006
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-45182-X
DOI - 10.1007/11870814_5
Subject(s) - computer science , computation , algebra over a field , algorithm , interval arithmetic , commutative property , multiplicity (mathematics) , mathematics , theoretical computer science , discrete mathematics , pure mathematics , mathematical analysis , bounded function
In Gröbner bases computation, as in other algorithms in commutative algebra, a general open question is how to guide the calculations coping with numerical coefficients and/or not exact input data. It often happens that, due to error accumulation and/or insufficient working precision, the obtained result is not one expects from a theoretical derivation. The resulting basis may have more or less polynomials, a different number of solution, roots with different multiplicity, another Hilbert function, and so on. Augmenting precision we may overcome algorithmic errors, but one does not know in advance how much this precision should be, and a trial–and–error approach is often the only way to follow. Coping with initial errors is an even more difficult task. In this experimental work we propose the combined use of syzygies and interval arithmetic to decide what to do at each critical point of the algorithm. AMS Subject Classification: 13P10, 65H10, 90C31.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom