z-logo
open-access-imgOpen Access
Improvement of Conventional Deinterlacing Methods with Extrema Detection and Interpolation
Author(s) -
Jérôme Roussel,
Pascal Bertolino,
Mariicolas
Publication year - 2006
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-44630-3
DOI - 10.1007/11864349_35
Subject(s) - maxima and minima , interpolation (computer graphics) , computer vision , artificial intelligence , stairstep interpolation , computer science , mathematics , pixel , multivariate interpolation , algorithm , image (mathematics) , bilinear interpolation , mathematical analysis
This article presents a new algorithm for spatial deinterlacing that could easily be integrated in a more complete deinterlacing system, typically a spatio-temporal motion adaptive one. The spatial interpolation part often fails to reconstruct close to horizontal lines with a proper continuity, leading to highly visible artifacts. Our system preserves the structure continuity taking into account that the mis-interpolated points usually correspond to local value extrema. The processing is based on chained lists and connected graph construction. The new interpolation method is restricted to such structures, for the rest of the image, a proper traditional directional spatial interpolation gives satisfactory results already. Although the number of pixels affected by the extrema interpolation is relatively small, the overall image quality is subjectively well improved. Moreover, our solution allows to gain back one of the major advantages of motion compensation methods, without having to afford their complexity cost.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom