z-logo
open-access-imgOpen Access
Using Branch Prediction Information for Near-Optimal I-Cache Leakage
Author(s) -
Sung Woo Chung,
Kevin Skadron
Publication year - 2006
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-40056-7
DOI - 10.1007/11859802_4
Subject(s) - branch predictor , computer science , cache , parallel computing , pipeline (software) , leakage (economics) , cpu cache , real time computing , embedded system , operating system , economics , macroeconomics
This paper describes a new on-demand wakeup prediction policy for instruction cache leakage control that achieves better leakage savings than prior policies, and avoids the performance overheads of prior policies. The proposed policy reduces leakage energy by more than 92% with only less than 0.3% performance overhead on average. The key to this new on-demand policy is to use branch prediction information for the wakeup prediction. In the proposed policy, inserting an extra stage for wakeup between branch prediction and fetch, allows the branch predictor to be also used as a wakeup predictor without any additional hardware. Thus, the extra stage hides the wakeup penalty, not affecting branch prediction accuracy. Though extra pipeline stages typically add to branch misprediction penalty, in this case, the extra wakeup stage on the normal fetch path can be overlapped with misprediction recovery. With such consistently accurate wakeup prediction, all cache lines except the next expected cache line are in the leakage saving mode, minimizing leakage energy.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom