An Integrated Temporal Partitioning and Mapping Framework for Handling Custom Instructions on a Reconfigurable Functional Unit
Author(s) -
Farhad Mehdipour,
Hamid Noori,
Morteza Saheb Zamani,
Kazuaki Murakami,
Mehdi Sedighi,
Koji Inoue
Publication year - 2006
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-40056-7
DOI - 10.1007/11859802_18
Subject(s) - computer science , computer architecture , parallel computing , embedded system
Extensible processors allow customization for an application by extending the core instruction set architecture. Extracting appropriate custom instructions is an important phase for implementing an application on an extensible processor with a reconfigurable functional unit. Custom instructions (CIs) usually are extracted from critical portions of applications. This paper presents approaches for CI generation with respect to the RFU constraints to improve speedup of the extensible processor. First, our proposed RFU architecture for an adaptive dynamic extensible processor called AMBER is described. Then, an integrated temporal partitioning and mapping framework is presented to partition and map the CIs on the RFU. In this framework, a mapping aware temporal partitioning algorithm is used to generate CIs which are mappable on the RFU. Temporal partitioning iterates and modifies partitions incrementally to generate CIs. In addition, a mapping algorithm is presented which supports CIs with critical path length more than the RFU depth.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom