z-logo
open-access-imgOpen Access
Analysis of Fast Input Selection: Application in Time Series Prediction
Author(s) -
Jarkko Tikka,
Amaury Lendasse,
Jaakko Hollmén
Publication year - 2006
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-38871-0
DOI - 10.1007/11840930_17
Subject(s) - computer science , perceptron , selection (genetic algorithm) , linear model , set (abstract data type) , series (stratigraphy) , resampling , multilayer perceptron , algorithm , time series , artificial intelligence , artificial neural network , machine learning , paleontology , biology , programming language
In time series prediction, accuracy of predictions is often the primary goal. At the same time, however, it would be very desirable if we could give interpretation to the system under study. For this goal, we have devised a fast input selection algorithm to choose a parsimonious, or sparse set of input variables. The method is an algorithm in the spirit of backward selection used in conjunction with the resampling procedure. In this paper, our strategy is to select a sparse set of inputs using linear models and after that the selected inputs are also used in the non-linear prediction based on multi-layer perceptron networks. We compare the prediction accuracy of our parsimonious non-linear models with the linear models and the regularized non-linear perceptron networks. Furthermore, we quantify the importance of the individual input variables in the non-linear models using the partial derivatives. The experiments in a problem of electricity load prediction demonstrate that the fast input selection method yields accurate and parsimonious prediction models giving insight to the original problem.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom