z-logo
open-access-imgOpen Access
Multivariate Stream Data Classification Using Simple Text Classifiers
Author(s) -
Sungbo Seo,
Jaewoo Kang,
Dongwon Lee,
Keun Ho Ryu
Publication year - 2006
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-37871-5
DOI - 10.1007/11827405_41
Subject(s) - computer science , jaccard index , pattern recognition (psychology) , artificial intelligence , multivariate statistics , naive bayes classifier , support vector machine , preprocessor , sliding window protocol , data mining , window (computing) , machine learning , operating system
We introduce a classification framework for continuous multivariate stream data. The proposed approach works in two steps. In the preprocessing step, it takes as input a sliding window of multivariate stream data and discretizes the data in the window into a string of symbols that characterize the signal changes. In the classification step, it uses a simple text classification algorithm to classify the discretized data in the window. We evaluated both supervised and unsupervised classification algorithms. For supervised, we tested Naïve Bayes Model and SVM, and for unsupervised, we tested Jaccard, TFIDF, Jaro and JaroWinkler. In our experiments, SVM and TFIDF outperformed the other classification methods. In particular, we observed that classification accuracy is improved when the correlation of attributes is also considered along with the n-gram tokens of symbols.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom