Learning Classifiers from Distributed, Ontology-Extended Data Sources
Author(s) -
Doina Caragea,
Jun Zhang,
Jyotishman Pathak,
Vasant Honavar
Publication year - 2006
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-37736-0
DOI - 10.1007/11823728_35
Subject(s) - computer science , ontology , naive bayes classifier , bayesian network , class (philosophy) , machine learning , ontology based data integration , artificial intelligence , data mining , semantic web , support vector machine , philosophy , epistemology
There is an urgent need for sound approaches to integrative and collaborative analysis of large, autonomous (and hence, inevitably semantically heterogeneous) data sources in several increasingly data-rich application domains. In this paper, we precisely formulate and solve the problem of learning classifiers from such data sources, in a setting where each data source has a hierarchical ontology associated with it and semantic correspondences between data source ontologies and a user ontology are supplied. The proposed approach yields algorithms for learning a broad class of classifiers (including Bayesian networks, decision trees, etc.) from semantically heterogeneous distributed data with strong performance guarantees relative to their centralized counterparts. We illustrate the application of the proposed approach in the case of learning Naive Bayes classifiers from distributed, ontology-extended data sources.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom