Stratified Context Unification Is NP-Complete
Author(s) -
Jordi Levy,
Manfred Schmidt-Schauß,
Mateu Villaret
Publication year - 2006
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-37187-7
DOI - 10.1007/11814771_8
Subject(s) - decidability , unary operation , unification , mathematics , pspace , context (archaeology) , combinatorics , discrete mathematics , time complexity , tree (set theory) , singleton , variable (mathematics) , computational complexity theory , computer science , algorithm , programming language , pregnancy , paleontology , genetics , biology , mathematical analysis
Context Unification is the problem to decide for a given set of second-order equations E where all second-order variables are unary, whether there exists a unifier, such that for every second-order variable X, the abstraction λx. r instantiated for X has exactly one occurrence of the bound variable x in r. Stratified Context Unification is a specialization where the nesting of second-order variables in E is restricted. It is already known that Stratified Context Unification is decidable, NP-hard, and in PSPACE, whereas the decidability and the complexity of Context Unification is unknown. We prove that Stratified Context Unification is in NP by proving that a size-minimal solution can be represented in a singleton tree grammar of polynomial size, and then applying a generalization of Plandowski's polynomial algorithm that compares compacted terms in polynomial time. This also demonstrates the high potential of singleton tree grammars for optimizing programs maintaining large terms. A corollary of our result is that solvability of rewrite constraints is NP-complete.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom