z-logo
open-access-imgOpen Access
Stratified Context Unification Is NP-Complete
Author(s) -
Jordi Levy,
Manfred Schmidt-Schauß,
Mateu Villaret
Publication year - 2006
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-37187-7
DOI - 10.1007/11814771_8
Subject(s) - decidability , unary operation , unification , mathematics , pspace , context (archaeology) , combinatorics , discrete mathematics , time complexity , tree (set theory) , singleton , variable (mathematics) , computational complexity theory , computer science , algorithm , programming language , pregnancy , paleontology , genetics , biology , mathematical analysis
Context Unification is the problem to decide for a given set of second-order equations E where all second-order variables are unary, whether there exists a unifier, such that for every second-order variable X, the abstraction λx. r instantiated for X has exactly one occurrence of the bound variable x in r. Stratified Context Unification is a specialization where the nesting of second-order variables in E is restricted. It is already known that Stratified Context Unification is decidable, NP-hard, and in PSPACE, whereas the decidability and the complexity of Context Unification is unknown. We prove that Stratified Context Unification is in NP by proving that a size-minimal solution can be represented in a singleton tree grammar of polynomial size, and then applying a generalization of Plandowski's polynomial algorithm that compares compacted terms in polynomial time. This also demonstrates the high potential of singleton tree grammars for optimizing programs maintaining large terms. A corollary of our result is that solvability of rewrite constraints is NP-complete.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom