Improved Pairing Protocol for Bluetooth
Author(s) -
Dave Singelée,
Bart Preneel
Publication year - 2006
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-37246-6
DOI - 10.1007/11814764_21
Subject(s) - bluetooth , computer science , computer network , denial of service attack , key agreement protocol , wireless , computer security , protocol (science) , public key cryptography , telecommunications , key distribution , encryption , operating system , medicine , alternative medicine , the internet , pathology
The Bluetooth wireless technology realizes a low-cost short-range wireless voice- and data-connection through radio propagation. Bluetooth also has a security architecture. In this paper, we focus on the key agreement protocol, which is the most critical part of this security architecture. Several security flaws have been identified within the Bluetooth protocols: an attacker can track users by monitoring the Bluetooth hardware address, all keys depend on a low-entropy shared secret (the PIN), there are some very easy to perform Denial of Service attacks. We propose a new initialization mechanism for the key agreement protocol of Bluetooth. This improved pairing protocol can be easily extended so that it will not only solve the dependency of the keys on the PIN, but also the location privacy problem and an important Denial of Service attack. Our solution is user friendly and energy-efficient, two essential features for Wireless Personal Area Networks (WPAN).
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom