Predicate Introduction Under Stable and Well-Founded Semantics
Author(s) -
Johan Wittocx,
Joost Vennekens,
Maarten Mariën,
Marc Denecker,
Maurice Bruynooghe
Publication year - 2006
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-36635-0
DOI - 10.1007/11799573_19
Subject(s) - computer science , predicate (mathematical logic) , programming language , semantics (computer science) , natural language processing
This paper studies the transformation of "predicate introduction": replacing a complex formula in an existing logic program by a newly defined predicate. From a knowledge representation perspective, such transformations can be used to eliminate redundancy or to simplify a theory. From a more practical point of view, they can also be used to transform a theory into a normal form imposed by certain inference programs or theorems, e.g., through the elimination of universal quantifiers. In this paper, we study when predicate introduction is equivalence preserving under the stable and well-founded semantics. We do this in the algebraic framework of "approximation theory"; this is a fixpoint theory for non-monotone operators that generalizes all main semantics of various non-monotone logics, including Logic Programming, Default Logic and Autoepistemic Logic. We prove an abstract, algebraic equivalence result and then instantiate this abstract theorem to Logic Programming under the stable and well-founded semantics.status: publishe
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom