The Rademacher Complexity of Linear Transformation Classes
Author(s) -
Andreas Maurer
Publication year - 2006
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-35294-5
DOI - 10.1007/11776420_8
Subject(s) - computer science , subspace topology , hilbert space , generalization , regularization (linguistics) , linear map , theoretical computer science , linear space , graph , transformation (genetics) , computational complexity theory , algorithm , discrete mathematics , artificial intelligence , mathematics , pure mathematics , mathematical analysis , biochemistry , chemistry , gene
Bounds are given for the empirical and expected Rademacher complexity of classes of linear transformations from a Hilbert space H to a finite dimensional space. The results imply generalization guarantees for graph regularization and multi-task subspace learning.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom