z-logo
open-access-imgOpen Access
Comparative Analysis of Push-Pull Query Strategies for Wireless Sensor Networks
Author(s) -
Shyam Kapadia,
Bhaskar Krishnamachari
Publication year - 2006
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-35227-9
DOI - 10.1007/11776178_12
Subject(s) - computer science , wireless sensor network , wireless , wireless network , computer network , distributed computing , telecommunications
We present a comparative mathematical analysis of two important distinct approaches to hybrid push-pull querying in wireless sensor networks: structured hash-based data-centric storage (DCS) and the unstructured comb-needle (CN) rendezvous mechanism. Our analysis yields several interesting insights. For ALL-type queries pertaining to information about all events corresponding to a given attribute, we examine the conditions under which the two approaches outperform each other in terms of the average query and event rates. For the case of ANY-type queries where it is sufficient to obtain information from any one of the desired events for a given attribute, we propose and analyze a modified sequential comb-needle technique (SCN) to compare with DCS. We find that DCS generally performs better than CN/SCN for high query rates and low event rates, while CN/SCN perform better for high event rates. Surprisingly, for the cases of ALL-type aggregated queries and ANY-type queries, we find that there exist “magic number” event rate thresholds, independent of network size or query probability, which dictate the choice of querying protocol. While our analysis is based on a single-sink square-grid deployment, we believe the insights can be generalized to random deployments.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom