Privacy-Preserving Decision Tree Mining Based on Random Substitutions
Author(s) -
Jim Dowd,
Shouhuai Xu,
Weining Zhang
Publication year - 2006
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-34640-6
DOI - 10.1007/11766155_11
Subject(s) - decision tree , computer science , ask price , data mining , tree (set theory) , perturbation (astronomy) , theoretical computer science , mathematics , combinatorics , business , physics , quantum mechanics , finance
Privacy-preserving decision tree mining is an important problem that has yet to be thoroughly understood. In fact, the privacy-preserving decision tree mining method explored in the pioneer paper [1] was recently showed to be completely broken, because its data perturbation technique is fundamentally flawed [2]. However, since the general framework presented in [1] has some nice and useful features in practice, it is natural to ask if it is possible to rescue the framework by, say, utilizing a different data perturbation technique. In this paper, we answer this question affirmatively by presenting such a data perturbation technique based on random substitutions. We show that the resulting privacy-preserving decision tree mining method is immune to attacks (including the one introduced in [2]) that are seemingly relevant. Systematic experiments show that it is also effective.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom