z-logo
open-access-imgOpen Access
Approximation Algorithms for Capacitated Rectangle Stabbing
Author(s) -
Guy Even,
Dror Rawitz,
Shimon Shahar
Publication year - 2006
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-34375-X
DOI - 10.1007/11758471_5
Subject(s) - rectangle , approximation algorithm , line (geometry) , set (abstract data type) , combinatorics , mathematics , line segment , algorithm , cover (algebra) , computer science , discrete mathematics , geometry , programming language , mechanical engineering , engineering
In the rectangle stabbing problem we are given a set of axis parallel rectangles and a set of horizontal and vertical lines, and our goal is to find a minimum size subset of lines that intersect all the rectangles. We study the capacitated version of this problem in which the input includes an integral capacity for each line that bounds the number of rectangles that the line can cover. We consider two versions of this problem. In the first, one is allowed to use only a single copy of each line (hard capacities), and in the second, one is allowed to use multiple copies of every line provided that multiplicities are counted in the size of the solution (soft capacities). For the case of d-dimensional rectangle stabbing with soft capacities, we present a 6d-approximation algorithm and a 2-approximation algorithm when d = 1. For the case of hard capacities, we present a bi-criteria algorithm that computes 16d-approximate solutions that use at most two copies of every line. For the one dimensional case, an 8-approximation algorithm for hard capacities is presented.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom