z-logo
open-access-imgOpen Access
Covering a set of points with a minimum number of lines
Author(s) -
Grantson Borgelt, Magdalene,
Levcopoulos, Christos
Publication year - 2006
Language(s) - English
DOI - 10.1007/11758471
Subject(s) - datavetenskap (datalogi)
We consider the minimum line covering problem: given a set S of n points in the plane, we want to find the smallest number l of straight lines needed to cover all n points in S. We show that this problem can be solved in O(n log l) time if l is an element of O(log(1-is an element of) n), and that this is optimal in the algebraic computation tree model (we show that the Omega(n log l) lower bound holds for all values of l up to O(root n)). Furthermore, a O(log l)-factor approximation can be found within the same O(n log I) time bound if l is an element of O((4)root n). For the case when l is an element of Omega(log n) we suggest how to improve the time complexity of the exact algorithm by a factor exponential in l

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom