z-logo
open-access-imgOpen Access
Artificial Evolution
Author(s) -
Michael Defoin Platel,
Manuel Clergue,
Philippe Collard
Publication year - 2006
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
DOI - 10.1007/11740698
Subject(s) - computer science , crossover , symbolic regression , operator (biology) , genetic programming , evolutionary algorithm , artificial intelligence , theoretical computer science , biology , genetics , repressor , transcription factor , gene
International audienceMost of the Evolutionary Algorithms handling variable-sized structures, like Genetic Programming, tend to produce too long solutions and the recombination operator used is often considered to be partly responsible of this phenomenon, called bloat. The Maximum Homologous Crossover (MHC) preserves similar structures from parents by aligning them according to their homology. This operator has already demonstrated interesting abilities in bloat reduction but also some weaknesses in the exploration of the size of programs during evolution. In this paper, we show that MHC do not induce any specific biases in the distribution of sizes, allowing size control during evolution. Two different methods for size control based on MHC are presented and tested on a symbolic regression problem. Results show that an accurate control of the size is possible while improving performances of MHC

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom