z-logo
open-access-imgOpen Access
Experiment Databases: A Novel Methodology for Experimental Research
Author(s) -
Hendrik Blockeel
Publication year - 2006
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-33292-8
DOI - 10.1007/11733492_5
Subject(s) - computer science , database , experimental data , data mining , experimental research , machine learning , artificial intelligence , mathematics , statistics , mathematics education
Data mining and machine learning are experimental sciences: a lot of insight in the behaviour of algorithms is obtained by implementing them and studying how they behave when run on datasets. However, such experiments are often not as extensive and systematic as they ideally would be, and therefore the experimental results must be interpreted with caution. In this paper we present a new experimental methodology that is based on the concept of “experiment databases”. An experiment database can be seen as a special kind of inductive database, and the experimental methodology consists of filling and then querying this database. We show that the novel methodology has numerous advantages over the existing one. As such, this paper presents a novel and interesting application of inductive databases that may have a significant impact on experimental research in machine learning and data mining.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom