z-logo
open-access-imgOpen Access
Achieving Private Recommendations Using Randomized Response Techniques
Author(s) -
Hüseyin Polat,
Wenliang Du
Publication year - 2006
Publication title -
lecture notes in computer science
Language(s) - English
Resource type - Book series
SCImago Journal Rank - 0.249
H-Index - 400
eISSN - 1611-3349
pISSN - 0302-9743
ISBN - 3-540-33206-5
DOI - 10.1007/11731139_73
Subject(s) - computer science
Collaborative filtering (CF) systems are receiving increasing attention. Data collected from users is needed for CF; however, many users do not feel comfortable to disclose data due to privacy risks. They sometimes refuse to provide information or might decide to give false data. By introducing privacy measures, it is more likely to increase users' confidence to contribute their data and to provide more truthful data. In this paper, we investigate achieving referrals using item-based algorithms on binary ratings without greatly exposing users' privacy. We propose to use randomized response techniques (RRT) to perturb users' data. We conduct experiments to evaluate the accuracy of our scheme and to show how different parameters affect our results using real data sets.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom